homotopy idempotent - definitie. Wat is homotopy idempotent
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is homotopy idempotent - definitie

Splitting idempotents; Split idempotent; Idempotent completion

Idempotent (ring theory)         
ELEMENT X OF A RING SUCH THAT X² = X
Abelian ring; Centrally primitive; Central idempotent element; Central idempotent; Idempotent element (ring theory); Idempotent endomorphism; Idempotents
In ring theory, a branch of abstract algebra, an idempotent element or simply idempotent of a ring is an element a such that .See Hazewinkel et al.
Idempotence         
  • A typical crosswalk button is an example of an idempotent system
PROPERTY OF CERTAIN OPERATIONS IN MATHEMATICS AND COMPUTER SCIENCE, THAT CAN BE APPLIED MULTIPLE TIMES WITHOUT CHANGING THE RESULT BEYOND THE INITIAL APPLICATION
Idempotent function; Idempotency; Idempotence (computer science); Idempotent; Idempotent (software); Indempotency; Indempotent; Idempotent element; Idempotent operator; Idempotent map
Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of places in abstract algebra (in particular, in the theory of projectors and closure operators) and functional programming (in which it is connected to the property of referential transparency).
idempotent         
  • A typical crosswalk button is an example of an idempotent system
PROPERTY OF CERTAIN OPERATIONS IN MATHEMATICS AND COMPUTER SCIENCE, THAT CAN BE APPLIED MULTIPLE TIMES WITHOUT CHANGING THE RESULT BEYOND THE INITIAL APPLICATION
Idempotent function; Idempotency; Idempotence (computer science); Idempotent; Idempotent (software); Indempotency; Indempotent; Idempotent element; Idempotent operator; Idempotent map
[???d?m'p??t(?)nt, ??'d?mp?t(?)nt]
¦ noun Mathematics an element of a set which is unchanged in value when operated on by itself.
Origin
C19: from L. idem 'same' + potent1.

Wikipedia

Karoubi envelope

In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi.

Given a category C, an idempotent of C is an endomorphism

e : A A {\displaystyle e:A\rightarrow A}

with

e e = e {\displaystyle e\circ e=e} .

An idempotent e: AA is said to split if there is an object B and morphisms f: AB, g : BA such that e = g f and 1B = f g.

The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (A, e) where A is an object of C and e : A A {\displaystyle e:A\rightarrow A} is an idempotent of C, and whose morphisms are the triples

( e , f , e ) : ( A , e ) ( A , e ) {\displaystyle (e,f,e^{\prime }):(A,e)\rightarrow (A^{\prime },e^{\prime })}

where f : A A {\displaystyle f:A\rightarrow A^{\prime }} is a morphism of C satisfying e f = f = f e {\displaystyle e^{\prime }\circ f=f=f\circ e} (or equivalently f = e f e {\displaystyle f=e'\circ f\circ e} ).

Composition in Split(C) is as in C, but the identity morphism on ( A , e ) {\displaystyle (A,e)} in Split(C) is ( e , e , e ) {\displaystyle (e,e,e)} , rather than the identity on A {\displaystyle A} .

The category C embeds fully and faithfully in Split(C). In Split(C) every idempotent splits, and Split(C) is the universal category with this property. The Karoubi envelope of a category C can therefore be considered as the "completion" of C which splits idempotents.

The Karoubi envelope of a category C can equivalently be defined as the full subcategory of C ^ {\displaystyle {\hat {\mathbf {C} }}} (the presheaves over C) of retracts of representable functors. The category of presheaves on C is equivalent to the category of presheaves on Split(C).